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We want to implement Anderson acceleration efficiently in SUNDIALS
SUite of Nonlinear and DIfferential/ALgebraic Solvers
Kernels implemented on top of abstract vector library in SIMD fashion
Supports serial, thread-parallel, and MPI-parallel vectors
Starting work on accelerators such as GPUs and the Intel Phi
Currently being tested on two large-scale applications
ParaDiS – Parallel dislocation dynamics
Ardra - Deterministic neutron transport





Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

2

Quick review of Anderson acceleration


Least-squares problem solved through QR factorization
New vectors added to QR using MGS
Oldest vectors removed using Givens rotations




Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

3


Only matters if cost of the function evaluation does not dominate
When QR problem is tall and skinny but not too skinny
m > 1
# Unknowns per processor is high enough to exceed cache
Machine balances now exceeding 100 flops/double
# of processors is high enough for communication to matter
Two costs:
Communication
Local BLAS Level 1 operations
An “efficient” implementation of AA is about minimizing the cost of QR




Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

4

Data reuse is key to efficiency on modern architectures
BLAS Level-1 ops have no data reuse
             =      +
BLAS Level-2 ops have some reuse
             =             *      
BLAS Level-3 ops have lots of reuse
                 =               *
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TSQR is an example of a blocked QR algorithm
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Blocked QR factorization would mean acceleration only applied after every k iterations
Two problems from Walker-Ni (2011):
1D Convection-Diffusion using restricted additive Schwarz
1024 unknowns, m = 5

Expectation-maximization
100,000 unknowns , m = 4
Blocking can have a modest impact on convergence
Blocking compromises acceleration
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MPI cost of Anderson is low
Test problem to measure MPI and local costs
Dummy function evaluation
16 iterations, m=16
Vulcan – IBM BG/Q
5D torus, optimized reductions
8000 processors give similar resutls
Cab – x86 cluster
Two-stage federated fat tree
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Vulcan - 1,000 processors
Local	1	10	100	1000	10000	100000	4.0000000000000002E-4	4.6000000000000001E-4	1.1999999999999999E-3	9.2999999999999992E-3	8.7999999999999995E-2	0.88	MPI	1	10	100	1000	10000	100000	4.4000000000000003E-3	4.3E-3	4.4999999999999997E-3	5.0000000000000001E-3	5.0000000000000001E-3	5.0000000000000001E-3	Unknowns per Processor
Log Time (s)
Cab - 256 processors
Local	1	10	100	1000	10000	100000	1000000	3.4E-5	5.8999999999999998E-5	6.6000000000000005E-5	3.3E-4	3.5000000000000001E-3	4.2999999999999997E-2	0.56000000000000005	MPI	1	10	100	1000	10000	100000	1000000	6.1000000000000004E-3	6.1000000000000004E-3	9.7000000000000003E-3	8.0999999999999996E-3	1.2999999999999999E-2	1.9E-2	4.5999999999999999E-2	Unknowns per Processor
Log Time (s)
Blocked QR reduces local cost
TSQR by Solomonik, et al.
Matrix 4 columns wide
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Vulcan - 1000 processors
GS Local	1	10	100	1000	10000	100000	1000000	1.8E-5	1.9000000000000001E-5	3.6000000000000001E-5	2.9E-4	2.8E-3	2.7E-2	0.27	TSQR Local	1	10	100	1000	10000	100000	1000000	5.4000000000000001E-4	6.4999999999999997E-4	7.2000000000000005E-4	8.3000000000000001E-4	6.7999999999999996E-3	6.6E-3	1.0999999999999999E-2	GS MPI	1	10	100	1000	10000	100000	1000000	2.7E-4	2.5999999999999998E-4	2.7999999999999998E-4	2.9999999999999997E-4	3.1E-4	2.9999	999999999997E-4	4.8999999999999998E-4	TSQR MPI	1	10	100	1000	10000	100000	1000000	1.2E-4	1.3999999999999999E-4	1.3999999999999999E-4	1.3999999999999999E-4	3.3E-4	5.1000000000000004E-4	4.0000000000000001E-3	Unknowns per Processor
Log Time (s)
Nodes now include accelerators
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GPU programming model is similar to vector machines

SIMD programming model
Unit stride memory access highly preferred
Need very high concurrency to hide memory latency
Local memories are small
+







Thread 1
Thread 2
Thread 3
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Initial GPU implementation using CuBLAS
Assumes function evaluation on GPU
Maintains approach of Walker (2011)
Modified Gram-Schmidt based QR factorization
CuBLAS-based implementation
Main loop on CPU
R matrix on CPU, Q matrix on GPU
10 µs latency each kernel launch
Expect to be highly bandwidth bound
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Speedup equals the ratio of memory bandwidths
4 iterations, m = 4


16 iterations, m = 16
Tested on two machines:
Tesla K40m + dual 8-core Xeon
Bandwidth ratio of 5.6x
GTX 680 + 4-core Xeon
Bandwidth ratio of 9x
Dummy test problem
4 and 16 iterations, m = 4, 8, 16
Processor utilization extremely low




Higher bandwidth of GPU gives higher performance, but less than 50% peak
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Classical Gram-Schmidt allows more concurrency and data reuse
Can be implemented with BLAS level-2 operations

Instability countered using reorthogonolization

As long as full rank, only need one reorthogonalization
Various cheap tests to determine if correction needed
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Transposed multiply



Block 1
Block 2
Cached
Threads
Vector is loaded only once over m columns
Coalesced data access maximizes bandwidth
Bandwidth slightly improved over Ddot.
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Conclusions
MPI cost is not a bottleneck for QR implementation of Anderson
On GPUs, kernels completely memory bound 
High bandwidth of device means high performance relative to CPU
CGS can minimize redundant loads of vectors
Need to test if reorthogonalization ruins benefit
Kernels still need to be refined
Having Anderson close to function evaluation is likely the real benefit
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The QR update is done in-place
New vectors added using modified Gram Schmidt
Implemented using dot products
Communication from MPI_Allreduce
Oldest vector removed from QR through Givens rotations
No MPI communication, but non-trivial local cost
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Open questions
How often is reorthogonalization needed?
Maintains approach of Walker (2011)
Modified Gram-Schmidt based QR factorization
CuBLAS-based implementation
Main loop on CPU
R matrix on CPU, Q matrix on GPU
10 µs latency each kernel launch
Expect to be highly bandwidth bound
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Restarting not compelling versus “sliding”
2D Poisson using RAS
4 subdomains per direction
3 cells overlap
16 processors
Non-blocked linear algebra
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Vulcan - 16 processors
Sliding	47
33
32
5	10	15	5.8000000000000003E-2	7.0999999999999994E-2	8.8999999999999996E-2	Restarting	71
49
42
5	10	15	5.8000000000000003E-2	7.2999999999999995E-2	8.5000000000000006E-2	m
Time (s)
Cab - 16 processors
Sliding	47
33
32
5	10	15	2.8000000000000001E-2	3.1E-2	3.6999999999999998E-2	Restarting	71
49
42
5	10	15	2.1000000000000001E-2	2.1999999999999999E-2	2.5000000000000001E-2	m
Time (s)
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