Considerations on efficient implementation of Anderson acceleration on parallel architectures
ICERM workshop on methods for large-scale nonlinear problems
J. Loffeld and C.S. Woodward
9/3/2015

LLNL-PRES-668437
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

1

We want to implement Anderson acceleration efficiently in SUNDIALS
SUite of Nonlinear and DIfferential/ALgebraic Solvers
Kernels implemented on top of abstract vector library in SIMD fashion
Supports serial, thread-parallel, and MPI-parallel vectors
Starting work on accelerators such as GPUs and the Intel Phi
Currently being tested on two large-scale applications
ParaDiS – Parallel dislocation dynamics
Ardra - Deterministic neutron transport

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

2

Quick review of Anderson acceleration

Least-squares problem solved through QR factorization
New vectors added to QR using MGS
Oldest vectors removed using Givens rotations

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

3

Only matters if cost of the function evaluation does not dominate
When QR problem is tall and skinny but not too skinny
m > 1
Unknowns per processor is high enough to exceed cache
Machine balances now exceeding 100 flops/double
of processors is high enough for communication to matter
Two costs:
Communication
Local BLAS Level 1 operations
An “efficient” implementation of AA is about minimizing the cost of QR

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

4

Data reuse is key to efficiency on modern architectures
BLAS Level-1 ops have no data reuse
 = +
BLAS Level-2 ops have some reuse
 = *
BLAS Level-3 ops have lots of reuse
 = *

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

5

TSQR is an example of a blocked QR algorithm

Q00
Q01
Q02
Q03

R00
R10
A0
A1
A2
A3
R20
R30
Q01
Q11

R01
R11
Q02 R02
Local QR computed in LAPACK
Communication avoiding

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

6

Blocked QR factorization would mean acceleration only applied after every k iterations
Two problems from Walker-Ni (2011):
1D Convection-Diffusion using restricted additive Schwarz
1024 unknowns, m = 5

Expectation-maximization
100,000 unknowns , m = 4
Blocking can have a modest impact on convergence
Blocking compromises acceleration

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

7

MPI cost of Anderson is low
Test problem to measure MPI and local costs
Dummy function evaluation
16 iterations, m=16
Vulcan – IBM BG/Q
5D torus, optimized reductions
8000 processors give similar resutls
Cab – x86 cluster
Two-stage federated fat tree

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

8

Vulcan - 1,000 processors
Local	1	10	100	1000	10000	100000	4.0000000000000002E-4	4.6000000000000001E-4	1.1999999999999999E-3	9.2999999999999992E-3	8.7999999999999995E-2	0.88	MPI	1	10	100	1000	10000	100000	4.4000000000000003E-3	4.3E-3	4.4999999999999997E-3	5.0000000000000001E-3	5.0000000000000001E-3	5.0000000000000001E-3	Unknowns per Processor
Log Time (s)
Cab - 256 processors
Local	1	10	100	1000	10000	100000	1000000	3.4E-5	5.8999999999999998E-5	6.6000000000000005E-5	3.3E-4	3.5000000000000001E-3	4.2999999999999997E-2	0.56000000000000005	MPI	1	10	100	1000	10000	100000	1000000	6.1000000000000004E-3	6.1000000000000004E-3	9.7000000000000003E-3	8.0999999999999996E-3	1.2999999999999999E-2	1.9E-2	4.5999999999999999E-2	Unknowns per Processor
Log Time (s)
Blocked QR reduces local cost
TSQR by Solomonik, et al.
Matrix 4 columns wide

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

9

Vulcan - 1000 processors
GS Local	1	10	100	1000	10000	100000	1000000	1.8E-5	1.9000000000000001E-5	3.6000000000000001E-5	2.9E-4	2.8E-3	2.7E-2	0.27	TSQR Local	1	10	100	1000	10000	100000	1000000	5.4000000000000001E-4	6.4999999999999997E-4	7.2000000000000005E-4	8.3000000000000001E-4	6.7999999999999996E-3	6.6E-3	1.0999999999999999E-2	GS MPI	1	10	100	1000	10000	100000	1000000	2.7E-4	2.5999999999999998E-4	2.7999999999999998E-4	2.9999999999999997E-4	3.1E-4	2.9999	999999999997E-4	4.8999999999999998E-4	TSQR MPI	1	10	100	1000	10000	100000	1000000	1.2E-4	1.3999999999999999E-4	1.3999999999999999E-4	1.3999999999999999E-4	3.3E-4	5.1000000000000004E-4	4.0000000000000001E-3	Unknowns per Processor
Log Time (s)
Nodes now include accelerators

Global memory
CPU memory
CPU
Local
mem
Local
mem
Core

Core
Scheduler

Local
mem

Core
PCI-E

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

10

GPU programming model is similar to vector machines

SIMD programming model
Unit stride memory access highly preferred
Need very high concurrency to hide memory latency
Local memories are small
+

Thread 1
Thread 2
Thread 3

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

11

Initial GPU implementation using CuBLAS
Assumes function evaluation on GPU
Maintains approach of Walker (2011)
Modified Gram-Schmidt based QR factorization
CuBLAS-based implementation
Main loop on CPU
R matrix on CPU, Q matrix on GPU
10 µs latency each kernel launch
Expect to be highly bandwidth bound

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

12

Speedup equals the ratio of memory bandwidths
4 iterations, m = 4

16 iterations, m = 16
Tested on two machines:
Tesla K40m + dual 8-core Xeon
Bandwidth ratio of 5.6x
GTX 680 + 4-core Xeon
Bandwidth ratio of 9x
Dummy test problem
4 and 16 iterations, m = 4, 8, 16
Processor utilization extremely low

Higher bandwidth of GPU gives higher performance, but less than 50% peak

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

13

Classical Gram-Schmidt allows more concurrency and data reuse
Can be implemented with BLAS level-2 operations

Instability countered using reorthogonolization

As long as full rank, only need one reorthogonalization
Various cheap tests to determine if correction needed

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

14

Transposed multiply

Block 1
Block 2
Cached
Threads
Vector is loaded only once over m columns
Coalesced data access maximizes bandwidth
Bandwidth slightly improved over Ddot.

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

15

Conclusions
MPI cost is not a bottleneck for QR implementation of Anderson
On GPUs, kernels completely memory bound
High bandwidth of device means high performance relative to CPU
CGS can minimize redundant loads of vectors
Need to test if reorthogonalization ruins benefit
Kernels still need to be refined
Having Anderson close to function evaluation is likely the real benefit

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

16

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›
The QR update is done in-place
New vectors added using modified Gram Schmidt
Implemented using dot products
Communication from MPI_Allreduce
Oldest vector removed from QR through Givens rotations
No MPI communication, but non-trivial local cost

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

18

Open questions
How often is reorthogonalization needed?
Maintains approach of Walker (2011)
Modified Gram-Schmidt based QR factorization
CuBLAS-based implementation
Main loop on CPU
R matrix on CPU, Q matrix on GPU
10 µs latency each kernel launch
Expect to be highly bandwidth bound

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

19

Restarting not compelling versus “sliding”
2D Poisson using RAS
4 subdomains per direction
3 cells overlap
16 processors
Non-blocked linear algebra

Lawrence Livermore National Laboratory
LLNL-PRES-668437
‹#›

20

Vulcan - 16 processors
Sliding	47
33
32
5	10	15	5.8000000000000003E-2	7.0999999999999994E-2	8.8999999999999996E-2	Restarting	71
49
42
5	10	15	5.8000000000000003E-2	7.2999999999999995E-2	8.5000000000000006E-2	m
Time (s)
Cab - 16 processors
Sliding	47
33
32
5	10	15	2.8000000000000001E-2	3.1E-2	3.6999999999999998E-2	Restarting	71
49
42
5	10	15	2.1000000000000001E-2	2.1999999999999999E-2	2.5000000000000001E-2	m
Time (s)
image3.png

image4.png

image5.png

image6.png

image7.emf

image8.emf

0 2 4 6 8 10 12 14 16 18 20
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration Number

L
o
g
 E

rr
o
r

Convection−Diffusion, c=20, d=20, N=1024

Fixed Point

Anderson

Blocked Anderson

0 10 20 30 40 50 60 70 80 90 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration Number

L
o
g
 E

rr
o
r

mu = [0;0.5;1], numSamples = 100k

Fixed−point

Anderson

Blocked Anderson

image9.png

image10.emf

image11.emf

10
0

10
2

10
4

10
6

10
−4

10
−2

10
0

Number of Unknowns

T
im

e
 (

s
)

GPU

CPU (1 Thread)

CPU (16 Threads)

10
0

10
2

10
4

10
6

10
−4

10
−2

10
0

Number of Unknowns

T
im

e
 (

s
)

GPU

CPU (1 Thread)

CPU (16 Threads)

image12.png

image13.png

image14.png

image2.png

